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Abstract—A stochastic dynamic probabilistic model of continuum dumage mechanics is generalized
from which various damuage processes could be described in the same mathematical scheme. The
approach makes use of the deterministic damaged constitutive equations and introduces the run-
domized damage variable into the thermodynamic potentiat and the potential of dissipation in place
of the deterministic ones. An [t (or Stratonovich) stochastic differential equation is derived, based
on the concept of an abstract dynamic system to describe the practical system under consideration.
A solution as a diffusion process can be obtained in the light of the theory of the stochastic
differential equation. The proposcd model can be used to describe the state and stochastic evolution
of various damage processes in relation to the irreversible rearrangements of micro structures of a
solid. From the proposed model, both the stochastic characteristic of damage and the deterministic
propertics of damage embodied in the deterministic theory, such as the non-lincarity of dumage
with regard to time or number of cycles and the effect of stress triaxiality on damage, can be
modelled.

{. INTRODUCTION

Damage, as a physical phenomenon representing the formation of microcavitation and/or
microcracking, exists unavoidably in engincering material and structure and evolves with
some parameters, such as time, loading and environments. When damage reaches a critical
value of the material under consideration, the failure of the component or structure will
happen. In the classical continuum mechanics of solids, the constitutive equations of
material in which the relationship of stress and strain or deformation are set up, are based
on the general principles of thermodynamics and on the assumption of ideul material, i.e.
no damage exists in the material. Fracture mechanics suggests an approach for damage
represenied by the ideal or regular crack with definite gecometry and location. Fracture
mechanics incorporating with the stress—strain analysis of components based on the classical
continuum mechanics in an uncoupled manner provides an analytical procedure for damage
assessment, and has been extensively used in engincering practice. However, it would be
unsuitable before the appearance of macrocrack and ditticult for some complex engineering
structures in which the geometry and location of crack could not be determined precisely.

Continuum damage mechanics (CDM), as a phenomenological theory, sceks to
describe the state and evolution of irreversible microstructural alterations or damage of
material by considering systematically the effects of damage on macroscopic mechanical
propertics of material such as the strength and stiffness. The general framework of CDM
is established on the thermodynamic theory of irreversible processes after identifying a
proper set of internal variables characterizing the irreversible microscopic occurrences
together with their conjugated generalized forees. The construction of damage constitutive
cquations in CDM is based on two potentials ; the thermodynamic potential which is used
to obtain the state laws of the non-dissipative phenomena and the definition of variables:
and the dissipative potential which is used to construct the laws of evolution of the dissipative
variables and processes. The result is a sct of constitutive equations for all the variables
introduced, The coupling among damage, stress and strain or deformation is automatically
obtained through the damaged constitutive equations.

Since damage is by nature related to some microscopic mechanisms and is quite
sensitive to certain environmental effects which vary in a stochastic manner, the stochastic
characteristic in the constitutive equations or the potential functions of the material after
the introduction of the damage variable will be unavoidable. This inspires us to develop
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the dynamic probabilistic theory of CDM. On the other hand. there are several additional
facts that strongly support such a need. One is the lack of an exact description of the
underlying damage process as arbitrariness in the mathematical description of the ther-
modynamic potential and the potential of dissipation for CDM. Another is the variation
in fatigue performance and the discrepancy between observation and prediction. In
principle. the probiem could be approached by statistical mechanics. micromechanics and
probabilistic mechanics of discrete media on the foundation of the microscopic theory. So
far. however, the microscopic theory is still far away from the application in the engineering
structures. From the practical point of view. the phenomenological approach based on the
macroscopic mechanical properties of the material such as the strength and stiftness may
be more suitable. In this respect. the CDM has become an appropriate choice, and it is
therefore pertinent to incorporate a probabilistic model in the CDM using a randomized
damage variable.

One approach to incorporate a stochastic probabilistic model is to deal with the
deterministic constitutive equations and to introduce the randomized damage variable in
place of the conventional damage variable, and at the sume time to add a stochastic
fluctuation process to describe the variability. In this approach, the evolution of the state
of the damage as a function of some parameters (time without loss of generality) is described.
Another approach is to assume an evolutionary probabilistic model to describe the damage
process from the beginning. In this approach the evolution of the probability distribution
of the dumage state and the evolution as a function of time is then considered. Both
approaches require the introduction of a probabilistic model based on certain assumptions
or hypotheses. In the investigation of numerous physical and engineering problems, the
hypothesis that is used most extensively s Markovian [see Howard (1971)]. The Markov
property, based on the principle that the “future™ s independent of the “past™ when the
“present” is known, is the causality principle of classical physics carried over to stochastic
dynamic systems, On the other hand, the hypothesis makes it possible to use a large varicty
of mathematical schemes claborated in the theory of Markov stochastic processes, and
could lead to interesting results.

2. DETERMINISTIC THEORY OF CONTINUUM DAMAGE MECHANICS

Continuum Damage Mechanics (CDM) supported by the thermodynamic theory of
irreversible processes has been developed continuously since the pioncering works by
Kachanov (1958) and Rabotnov (1963). At present. it has evolved as a practical tool to
take into account the various damaging processes in solid materials and structures at a
macroscopic continuum level.

Before developing a general stochastic dynamic model. a brief review of several con-
cerned concepts and definitions is presented here.

General framework of CDM

Continuum damage mechanics, as a phenomenological theory, is established from the
general principles of thermodynamics. A state variable, as an internal variable, representing
the irreversible microstructural rearrangements manifested in the modes of diffuse flow,
change of phase, change in porosity, crystalline slip. twinning and loss of cohesion along
the grain boundarics or clcavage planes, is introduced into the constitutive equations of
solids. Based on thc assumptions (a) that the response of a system depends only on the
current state of the system under consideration, and (b) that a thermodynamically irre-
versible process can be approximated by a sequence of constrained cquilibrium states, the
application of the internal variable method leads to a sufficiently close approximation of a
given non-equilibrium state by a constrained equilibrium state (Kestin and Bataille, 1977).

Damage variable

For the solution over a wide range of responses. damage as an internal variable should
have not only a real physical meaning. but should also be able to reflect the dominant
mechanism of irreversible rearrangements and dissipative processes of the system under
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consideration. Since damage is a comprehensive manifestation of a host of microscopic
responses which is related to a complex thermodynamic process. it would not be easy to
identify such a parameter. Therefore a lot of effort has been made using CDM to identify
a suitable damage variable with the physical requirements described above and with the
mathematical accessibility. The various scalar, vectorial and tensorial definitions with the
mechanical, geometrical and physical interpretations can be found in a number of reviews by
several distinguished investigators [see, for example, Chaboche (1981, 1988a,b), Kachanov
(1986), Krajcinovic (1984), Krajcinovic and Lemaitre (1987), Lemaitre (1984, 1986, 1987).
Lematitre et al. (1987) and Murakami (1987)].

Thermodynamic variables

In principle, it is always possible to select a proper set of internal variables which will
lead to a sufficiently close approximation of a given non-equilibrium state by a constrained
equilibrium state through the constitutive equations. A set of internal variables developed
by Lemaitre (1987) is limited to isotropic hardening for plasticity and to the isotropic
damage theory. For more general cases, the set of internal variables, together with their
associated variables or conjugate forces, is listed in Table 1.

In general, the variables defined in Table | are suitable for most strain hardening
models and damage models including both isotropic and anisotropic models. For the
mechanical response, in the usual sense, isothermal conditions are considered so that the
effect of temperature enters the constitutive equations only through material parameters.

Essential postulates of COM

To establish the damaged constitutive cquations, it is necessary to relate the damage
to other internal variables by some physical hypotheses. The postulate which is used
extensively in CDM is the hypothesis of strain equivalence. This hypothesis is basically
empirical in nature, and was tacitly adopted from the beginning of CDM by Kachanov
(1958) and later was phrased as an essential principle by Lemaitre and Chaboche (1978)
[see also Lemaitre (1971) and Chaboche (1977)). [t states: Any strain constitutive equation
for a damaged material is derived from the same potentials as for a virgin material except
that all the stress variables are replaced by cilective stresses. [t relates to the concept of
cffective stress  defined by

é=M(D): o, (1)

where M(D) is a fourth rank symmetric tensor, named as the “damage effect tensor™ and
the symbol *: ™ means the tensorial product contracted on two indices. In general, M(D)
has 21 independent elements. One possible formulation was proposed by Cordebois and
Sidoroff (1982) and subsequently by Chow and Wang (1987a,b) in the principal coordinate
system which has only six elements that are non-zero. While damage is considered as
isotropy, (1) is reduced to a scalar form:

é =a/(l-D) ()

which relates the stress to the area supporting the load cffectively (Rabotnov, 1969 ; Janson,
1977).

Table 1. Thermodynamic variables

State variables Associated variables
Strain tensor & Cauchy stress tensor o
Temperature 0 Entropy s
Elastic strain tensor & Cauchy stress tensor a
Plastic strain tensor e" Cauchy stress tensor ~-a
Accumulative plastic strain p  Strain hardening threshold R
Damage tensor D Damage cnergy release rate Y
Overall damage w  Damage strengthening threshold B
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The hypothesis of strain equivalence. associated with the concept of effective stress.
yields a strain-based formulation of damaged constitutive equations. However, a stress-
based characterization of the material response is sometimes necessitated as most elasto—
plastic models in the theory of plasticity are formulated in stress space. Thus, a hypothesis
of stress equivalence, similar to the strain equivalent postulate except that strain is replaced
by stress, is proposed by Simo and Ju (19874.b). Since anisotropic damage is defined as a
second order tensor [see Lu and Chow (1990)]. the postulates of both strain equivalence
and stress equivalence lead to an unsymmetrical stiffness or compliance matrix and hence
may be thermodynamically inadmissible. To overcome this, the hypothesis of elastic energy
equivalence (Sidoroff, 1981) and the hypothesis of stress working equivalence (Lu and
Chow. 1990) are proposed.

Thermodvnamic potential

Based on the thermodynamic theory. under the isothermal condition the state of the
damaged material is defined through a thermodynamic potential per unit mass expressed
by

WX, 1) = (e e p. Dowoxc o) (3)
where x denotes a material point, ¢ is time and others are defined in Table 1. By using a
partial Legendre-Fenchel transformation, the dual potential of (3), the complementary
energy per unit mass, can be obtained as

PP (S ) = a8 —pP(x. 1), “)

where p is the density of the matter. Upon substitution of (3) and (4) into the Clausius
Duhem inequality one obtains

oy Y N O Y
T=Pa B =0 o P p P ow Y P ap (3

From the normality rule, (5), and thermodynamic potential, (3), the state laws of the
materials with damage can be derived.

Potential of dissipution

The evolution of damage, as a dissipative process of irreversible rearrangement of
microstructures, can be described by flux variables and their conjugate thermodynamic
forces. Table 2 lists a set of the flux variables and their conjugate dual variables where the
symbol ™ on top of a letter denotes the derivative with respect to time, where q is the
outwurd heat flux vector and ¢ is temperature.

The complementary kinetic laws of damage evolution can be derived from the dis-
sipative potential which is postulated as a convex non-negative scalar function of all flux
vartables and the state variables acting as parameters, i.c.

Tuble 2. Flux variables and their
conjugite dual variables

Flux variables  Dual variables

&P a
-p 4]
-D Y
- b

qt grad 0
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G(xX.1) = p(e°. p. DV q 0 .67, p. D.w.0.x. 1) (6)
and the dual function can be obtained by partial or total Legendre-Fenchel transform as
o*(x.1) = d* (6. R.Y.B.grad 0 &°.c".p.D.w.8.x.1). 7N

The dissipation rate is expressed by the Clausius-Duhem inequality which must be
positive to satisfy the second principle of thermodynamics. Together with the state laws the
generalized normality rules can be obtained as

(‘.¢*. . (ﬁ(b# , (‘.(b*

cor.a_ -
(B 0 fgradd’

o = - Lo W 8
‘o p R cY (8)

The most important step in the determination of the dumaged constitutive equations
is the selection of analytical expressions for the potential of dissipation used to define the
kinetic laws.

3. STOCHASTIC DYNAMIC PROBABILISTIC MODELLING

To describe the damage of the structured solids using the stochastic dynamic theory,
we conceive an abstract dynamic system representing the state and cvolution of the damage
material under consideration. The system has the propertics as follows:

Property 1. Structured solids under consideration in the system are described as a
continuous system which mceans that the molecular structure of matter will be disregarded.
Under the assumption, all variables defined in CDM., such as the variables in Table | and
the theory accompanied by the relevant conception developed by CDM are valid in the
system.

Property 2. In the process of damage evolution, the system’s continuity and homo-
geneity remain the same as the original. In light of this assumption, the system is still
described as continuum when damage in some point or element reaches some critical value
in which the stitfness and strength have vanished.

Property 3. Damage variable D, as a continuum or discrete state variable, varies in a
random manner in a rundom field with a continuum or discrete parameter ¢ (time, without
loss of generality), designated as D,. and has the random initial value D, = D,

Property 4. The stochastic characteristic of the state and evolution of damage in the
system is represented by a small stochastic fluctuation of a white Gaussian noise ¢,, for
— <t < o, with mean £, = 0 and a constant spectral density on the entire real axis.

In this paper, for the sake of simplicity, we confine ourselves to isotropic dumage
although no restriction on anisotropy is imposed in the abstract dynamic system. Therefore,
the damage tensor D and damage energy relcase rate Y degenerated to the scale form D
and Y, respectively.

To develop the stochastic dynamic modelling starting from the deterministic consti-
tutive equations, we need to extend the relevant concepts and the expressions in CDM to
proper random ficlds, based on the abstract dynamic system conceived.

Let {S,: r€[ry. T]}. denoted simply as §,, represent a stochastic process whose state
space is a d-dimensional Euclidean space R (for ¢ > 1) and whose index set is defined in
aninterval [¢,. T] of the real axis R’ which can in general be (— sc. + a0). For our purposes,
it will be sufficient in all cases to assume

SAS 29:23-H
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{t,. T]= [0, ) =R".

We shall always assume that the state space R is endowed with the sigma-algebra B
of Borel sets and assume that all processes to be discussed below are defined on a certain
probability space (. 1. P) Q = (R*)' T is the space of all R%valued functions defined on
the interval [r,, T]: U = (BY) T is the product sigma-algebra generated by the Borel sets
in R; and P is the probability defined by the finite-dimensional distributions of the process
S, on (Q. ).

In our stochastic dynamic system. besides the evolution of the damage. all other
variables and potentials after introducing the randomized damage variable will contain the
deterministic relationships similar to those in CDM.

With the assumption of continuum, the rate of damage evolution in the material can
be represented mathematically by a differential equation of the form

D.=f.D.X). t2t,. D =D, 9)

o

in which D, is the randomized state variable of damage defined in the d-dimensional
Euclidean space RY, and X, is the random disturbance process defined in the m-dimensional
Euclidean space R”. In this paper. we confine ourselves to d = m = | cases. D, denotes the
derivative of D, to parameter ¢ with the interval [¢,, T] in which ¢, 20 and T < w. In
general, f (v, D,. X)) could be non-linear in X,.

In light of Property 4 described above, the disturbance process in the system is rep-
resented by a small fluctuation of a white Gaussian noise ¢,. So the random disturbance
process is independent with D,. Therefore, the evolution of damage in our system could be
considered as lincar in X, so that (9) has the form

D, = f(.D)+G(.D)X,. 121, D, =D, (10)

In this model, .Y, could be described by uny independent random process with small
fluctuation. If the fluctuation is a stochastic process with sufliciently smooth or continuous
sample functions, (10) can be considered as an ordinary differential equation for the sample
functions of the state of the system. When X, does not depend at all on chance but is equal
to u fixed tunction, especially X, = 0, (10) degenerates into a deterministic equation.

For no other reason than that of the physical phenomenon as well as the simplicity in
mathematics, we introduce the white noise 2, as the prototype of a delta-correlated Gaussian
noise process representing the fluctuating process. Thus our model has the form

D, = f(t.D)+G(t,D)E. 1>=1,, D, =D, (1)

for which a precise mathematical theory, by virtue of the stochastic integral, has been
developed [see Arnold (1974)]. The solution is a Markov process and the eflficient methods
exist for the mathematical analysis of this type of process. However, it has the disadvantage
that its sample functions are not smooth functions [see Howard (1971)]. This is typical of
the Markov processes because the Markov property tormuliated in a negative way states
that: for a known “present™ it is forbidden to transmit information from the “past™ into
the ““future™.

Even though the white noise £, is not a usual stochastic process, nonctheless the
indefinite integral of &, can be identified by an R '-valued Wiener process W,. i.c.

!
W, = j & dr,
0

or. in shorter symbolic notation when we consider both processes as generalized stochastic
processes, ias
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dW, = £ du
Therefore (1) could be re-written as
dD, = f(t.D)dt+G(t. D)dW,, t,<t<T<x, D, =D, (12)

We have not yet considered f(s.D,) and G{(¢.D,) in (10) even though (12) has been
developed. Obviously, f(r, D,) and G(¢, D,) will depend on the constitutive equations of
material since our approach is to start with the deterministic approach accompanied by
an abstract dynamic system. Two assumptions are important in developing the model.
Assumption | is that f(¢. D,) in (12) should be identical to the deterministic constitutive
equations of material under consideration. Although it is unnecessary in developing a
stochastic dynamic model because of the noise-induced shift, it is reasonable to compound
the shift into the deterministic constitutive equations of material from the beginning. In
fact, the definition of the damage variable D in CDM has been explained as a statistical
mean value, This means that the deterministic constitutive equations developed in CDM
could contain the noise-induced shift. Assumption 2 is that the intensity of fluctuation is
directly proportional to the mean rate of damage evolution described by the deterministic
constitutive equations. This assumption is made because of the consideration of physics
rather than one of mathematics.

From these two assumptions and the generalized normalized rules for the rate of
increasc of internal variables, (8), a general stochastic dynamic model for damage is
proposcd in the form

apr L 3pE,

D, =~ ("Y, +Qﬂy)’,‘sr~ Lh€t€T <, D'u =Dy, (13)
or
i Co¥
ap, = — 2 dt+¢ »¢-’dW,, thw<$t<T<o, D, =D, (14
ay, oy, ¢

where { is a proportional constant. It should be noted that subscript ¢ have been added to
¢* and Y to distinguish between deterministic and stochastic ones.

In accordance with this model, the stochastic dynamic laws could be derived from the
generalized potential function of dissipation. For example, from the potential function
proposed by Lemaitre (1987) a stochastic damage constitutive equation can be obtained as

Y (p+#) Yi(p+1)

dD, = dr+ dW,, t,<t<T<w, D, =D, 15

S5 a-py s a-pyn M W= Pe (9

where S, and a, arc two coeflicients of the material characteristic whercas §, = Sy/{ isa

stochastic characteristic of the material. In Lemaitre theory, n represents the rate of the
accumulated microplastic strain and

o [ @ e? ey o uiop] ]
B 2E(1-D)? 2E(1 - Dh)* (1 —kn'™y’

where v and £ are elasticity cocfficients varying with temperature ; & is a closure coefficient
which characterizes the closure of the microcracks and microcavities: k and m are micro-
plasticity coefficients. In the formulation, the Cauchy stress tensor was divided into a
“positive” part {¢) and a “‘negative” part {—o).

Equation (14) could be used to describe the stochastic evolution of various types of
damage to the material and structure, such as ductile, fatigue, creep and so on. The
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admissibility of the model proposed will be supported by both the reasonable description
of the physical phenomenon and the accessibility of the mathematics.

+. PROPERTIES AND SOLUTION OF THE STOCHASTIC MODEL

The proposed model. (14). is based on an abstract dynamic system. In this system. the
stochastic fluctuation is described by a white Gaussian noise J,, for — x <t < =, with
zero mean and a constant spectral density on the entire real axis. This is, as it is known, a
non-physical but abstract and useful idealization. The infinite integral of &, can be identified
with a Wiener process with mean EW, = 0 and with covariance EW, W, = min (2. 5). There-
fore, (14) could be interpreted as an abbreviation for the integral equation

(3}

((b*
AW, t,<t<T<x. D, =D, (16)

|

fy

"od* "t
D, =D,— -‘b-’-»dt+J ¢

WY,

0

i

Since the sample functions of I, are, with probability . continuous though not of bounded
variation in any interval. the second integral in (16) cannot be regarded in general as an
ordinary Riemann-Stieltjes integral with respect to the sample functions of W, This is
because in the attempt to evaluate the integral

{
f W, dw,

as the imiting value of the approximating sums

S‘n == Z u‘/n(”;l,‘ ;Vl, l)' {(! < { s. o g f,, = 1~ t: i s rl S ":*

=1

the result depends very much on the choice of the intermediate point z,. A different choice
ol r, will provide a different interpretation of the stochastic differential equation. §16°s choice
of r, = ¢, , leads to an unsymmetrical integral

J W, dW, = qm-lim S, = (W} = W2)12= (1= 1,)/2

u

with respect to the variable ¢ since the increments d W, point into the future (Ité, 1951, in
which gm-lim denotes quadratic mean or mean square limit, and dn = max (1,—¢,_,). It
results in the discrepancy between the stochastic differential equation and the ordinary
difterential equation, However, it is just this lack of symmetry that leads to the simple
formulac for the first two moments of the integral and to the Martingale property [scc
Arnold (1974)]. Furthermore, from 1t6's theorem a diffusion process can be obtained as
the solution of the stochastic differential equation (12). The intuitive significance of the
cocfficients (1, D,) and G (1, D,) is explained by regarding £(1, D,) as the drift vector and

B(t.D,)=G(t.D)G (1.D,), (17

as the diffusion matrix of that process, in which G'{r, D,) is the transposc of the matrix
G (1. D). Therefore, in accordance with the definition of the diffusion process the first two
moments are

|
lim . rj (y=—x)P(r.x ot dy) = ft.x) (18)
- iv -xlge

it

and
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lim ~]—- f (v—X)(y—x)P(r,x.t,dy) = B(r. x). 19
N v-xlge

where e > 0. tet,. T]. xe R and ye R,

Another interpretation is based on the definition of Stratonovich’s time-symmetric
stochastic integral (Stratonovich, 1966). In accordance with Stratonovich's definition, the
unsymmetrical part in the integral

i n u”, + lfV, R R
W, dW, = qm-lim y — W, =W, )= (WI=W}H12
to on — = [ [ "

vanishes. Therefore. the solution of (16) can be obtained by formal integration by parts.

Obviously, the two different mathematical definitions will lead to different solutions
for our model. These discrepancies arise not from the errors in the mathematical calculation
but from the general discontinuity of the relationship between differential equations for
stochastic processes and their solutions. Though Stratonovich's definition matches the
consistency between the stochastic differential equation and ordinary differential equation,
it is, however, difficult to judge which of the two is the correct definition because there is
no reason why the definition of the stochastic differential equation should be consistent
with that of the ordinary differential equation. In fact, Ttd's equation should be equivalent
to Stratonovich's equation through a mathematical transform as

G D))

5
200, Gt D,))dI+G(I. D)YdW,. (20)

dn, = (/’(1. D)+

In view of the above reasons, we adopt 1td’s interpretation, from which the drift
cocllicient f(r, D,) identifies with the deterministic constitutive equations in CDM. This is
one of the reasons for Assumption | described in Section 3 to be taken.

There are in general two approaches for the solution of our model: One is directly
concerned with the random damage variable D, und its derivative. This belongs to the
probabilistic or direct method. Another is the so-called analytical or indirect probability
method which does not deal with the timewise development of the state D, but, for example,
with the timewise development of transition probabilities P(D,e B|D, = x). In accordance
with the theory of the stochastic differential equation, the solution of (14) is a diffusion
process. For the diffusion process, there exist effective solutions for the analytical probability
method. For example, we can obtain the transition density P,(t, D, t,D,) from a fun-
damental solution of the Kolmogorov's forward or the Fokker-Planck equation:

o h} o d

()
O I IIEESY };(,D (6,0.00p0 =0 n

~
¢t s 1, | 1y=1

where b;,(¢, D,) are the elements of the diffusion matrix B(r, D,). In this paper, we do not
describe the solution process since it can be found in relevant references {sece Arnold (1974)).
Instead, we bricfly discuss the existence and uniqueness of a solution of the proposed model.

According to the theory of the stochastic differential equation, to ensure the existence
and uniqueness of a solution of the equation

dD, = f(t.D)Y+G(.D)dW,. t,<t<T<w, D, =D,

where W, is an R™-valued Wiener process and D, is a random variable independent of W/, —
W, for t 2 t,. The R‘-valued function f(t. D,) and the (d x m matrix)-valued function
G(t. D,) should be defined and measurable on [t,, 7] x R and satisfy the following proper-
ties. There exists a constant K > 0 such that:
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(a) forall re[t,. T]. xe R¥and ye R
L. ) =f. ) +1G (1. x)=G(t. v)| < K|x—y]:
(b) forall te[ty. T] and xe R,
S0P +1G (.0 < K31 +1x]).

ln our mOdel (14).
(‘ )= f(‘ )= ,Y‘

where { is a bounded constant characterizing the intensity of random fluctuation. Therefore,
the conditions of existence and uniqueness of a solution for the stochastic differential
equation (14) will be the same for an ordinary differential equation. In other words, our
model has a unique R“valued solution D, in the index set [¢,. T] = [0. %) of the stochastic
process, and continuous with probability | so long as a solution of the deterministic
constitutive equations in CDM satisfies the conditions of existence and uniqueness.

5. DISCUSSION

Although the delinition of damage in CDM is based on the concept of the statistical
mean, the evolution process is sensitive to environmental effects which often vary in a
random manner and usually cannot be controlled or measured in practice. The need for
incorporating the stochastic characteristic in the damage variable D is therefore evident. In
addition to the physical consideration, the development of probabilistic CDM can help to
solve complex ficld problems in arcas of engincering such as acrospace and offshore since
exact analysis using the deterministic theory of CDM is extremely diflicult in these arcas.

The proposed model is intended to bridge the gap between CDM and the probabilistic
CDM. The analysis reduces to a stochastic differential equation for which there exists a
powerful analytical means at our disposal. In accordance with the theory of the stochastic
differential equation, the solution process of our model is a diffusion process with the drift
coeflicient £(¢, D,) and the diffusion matrix B(r, D). This is a special case of the Markov
process with continuous sample functions which at first serve as probability-theoretic
models of physical diffusion phenomena, but later have been proven to be suitable for
stochastic modelling of a wide variety of physical phenomena. If we first assume that
damage evolution can be described by a diffusion process, the first two moments of the
increment D,— D, under the condition D, = x as ¢t | t become

E.(D~=D)= f(r.x)(1=1)+0(t~1) (22)

and
E (D, ~D)D,—D) = B(t,x)(t—1)+0(1—1). (23)
Therefore, f(t, x) denotes the mean rate of the random damage evolution described by D,
under the assumption D, = x. B(t, x) is a mcasure of the local magnitude of the fluctuation

of D,~ D, about the mean value. These are, in physics, consistent with Assumptions | and
2 described in Scction 3. This is also onc of the reasons for us to take these assumptions.

6. CONCLUSIONS

By virtue of the deterministic theory of CDM, a general mathematical scheme of
stochastic dynamic modelling for damage evolution has been proposed. The stochastic
dynamic analysis of various types of damage, such as ductile, fatigue and creep damage,
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could be taken into account. This model is based on the potential of dissipation after
introducing the randomized damage variable in a proper random field. The coupling among
the randomized damage, stress and strain is automatically obtained through the stochastic
damaged constitutive equations. Therefore, the stochastic dynamic analysis of structural
damage could be integrated with the stress-strain analysis of structure using numerical
methods. such as the finite element. boundary element and hybrid element methods.

In addition to the stochastic dynamic property of damage evolution, the proposed
model can also describe some important properties embodied in the deterministic damage
theory. Taking Lemaitre theory as an example [see eqn (13)]. the proposed model can at
least include the following properties:

—The positive damage rate since the systematic term (drift coefficient) in our model is
positive and controls the process of damage evolution.

—The effect of stress triaxiality on damage can be modelled because the variable Y in the
systematic term contains the triaxiality ratio (5, 0,,).

—Damage under random loading is modelled through the variation of stress in both the
systematic and fluctuation (diffusion) terms.

—The non-linearity of damage with regard to stress by its dependence on p and # which
are non-lincar functions of stress.

—The non-lincarity of damage with regard to time or number of cycles by the term
(1 —=D,)" corresponds to a non-lincar stochastic differential equation in damage.

Finally. it should be noted that the proposed stochastic dynamic model will degenerate
into the deterministic constitutive equations of CDM while the fluctuation term vanishes,
Therefore, the proposed model can not only take into account the physical behaviour, but it
also enables the damage analysis to be carried out simultancously based on the deterministic
theory and the stochastic dynamic theory.
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