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Abstract-A stochastic dynamic probabilistic model ofcontinuum damage mechanics is generalized
from which various damage processes could be described in the same mathematical scheme. The
approach makes use of the deterministic damaged constitutive equations and introduces the ran­
domized damage variable into the thermodynamic potential and the potential ofdissipation in place
of the deterministic ones. An Ito (or Stratonovichl stochastic differential equ,ltion is derived. based
on the concept of an abstract dynamic system to describe the pmctical system under consideration.
A solution as a diffusion process can be obtained in the light of the theory of the stochastic
difTerenthll equation. The proposed model can be used to describe the state and stochastic evolution
of various damage processes in relation to the irreversible rearrangements of micro structures of a
solid. From the proposed model. both the stochastic characteristic ofdamage and thc deterministic
prl'pertics of damage emhodied in the deterministic theory. such as the non-linearity of damage
with regard to time or numher or cydes and the effect of stress triaxiality on damage. can he
modelled.

l. INTROnUClION

Damage, as a physical phenomenon representing the formation of microcavitati<ln and/or
microcrucking, exists unuv<lidably in engineering materiul und structure and evolves with
some purumeters, sueh us time, louding and environments. When dunwge reuches u critic:1I
value of the material under considerution, the failure of the component or structure will
huppen. In the classical continuum mechanics of solids, the constitutive equations or
muterial in which the rclutionship of stress und struin or deformation an: set up, an: !lased
on the general principles of thermodyn:lmics and on the assumption of ideal material. i.e.
no damage exists in the material. Fructure mechanics suggests an <tpproach lor dumage
represented by the ideal or regular crack with definite geometry and location. Fracture
mechanics incorporating with the stress-strain analysis ofcomponents based on the c\<tssical
continuum mechanics in an uncoupled manner provides <tn analytical procedure for dumage
assessment, and has been extensively used in engineering practice. However, it would be
unsuitable before the appearance of macrocrack and dillkult for some complex engineering
structures in which the geometry and location of crack could not be determined precisely.

Continuum damage mechanics (COM), as a phenomenological theory, seeks to
describe the state and evolution of irreversible microstructural alter'ltions or damage or
material by considering systematically the effects of damage on macroscopic mechanical
properties of material such as the strength and stiffness. The general fmmework of COM
is established on the thermodynamic theory of irreversible processes :Ifter identifying a
proper set of intern;ll variables characterizing the irreversible microscopic occurrences
together with their conjugated generalized forces. The construction of damage constitutive
equations in COM is based on two potentials: thc thermodynamic potenti<tl which is uscd
to obtain the state laws of the non-dissipative phenomena and the delinition or vari<tbles:
and the dissiputive potential which is used to construct the l:tws ofevolution of the dissipative
vari<tbles and processes. The result is a set of constitutive equations for all the v;lri;lblcs
introduced. The coupling among damage, stress .tIld strain or deform'ltion is automatically
obtained through the d<tmaged constitutive equ;ltions.

Since d;lmage is by n<tture related to some microscopic mechanisms und is quite
sensitive to certain environmental effects which vary in a stochastic manner, the stochastic
characteristic in the constitutive equations or the potential functions of the material ufter
the introduction of the damage variable will be unavoidable. This inspires us to develop
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the dynamic probabilistic theory of COM. On the other hand. there are several additional
facts that strongly support such a need. One is the lack of an exact description of the
underlying damage process as arbitrariness in the mathematical description of the ther­
modynamic potential and the potential of dissipation for CO\1. Another is the variation
in fatigue performance and the discrepancy between observation and prediction. In
principle. the problem could be approached by statistical mechanics. micromechanics and
probabilistic mechanics of discrete media on the foundation of the microscopic theory. So
far. however. the microscopic theory is still far away from the application in the engineering
structures. From the practical point of view. the phenomenological approach based on the
macroscopic mechanical properties of the material such as the strength and stitfness may
be more suitable. In this respect. the COM has become an appropriate choice. and it is
therefore pertinent to incorporate a probabilistic model in the COM using a randomized
damage variable.

One approach to incorporate a stochastic probabilistic model is to deal with the
deterministic constitutive equations and to introduce the randomized damage variable in
place of the conventional damage variable. and at the same time to add a stochastic
fluctuation process to describe tht: variability. In this approach. the evolution of the state
of the damage as a function of some parameters (time without loss ofgenerality) is described.
Another approach is to assume an evolutionary probabilistic model to describe the damage
process from the beginning. In this approach the evolution of the probability distribution
of the damage state and the evolution as a function of time is then considered. Roth
approaches require the introduction of a probabilistic modd based on certain assumptions
or hypotheses. In the investigation of nUlm:rous physical and engineering problems. the
hypothesis that is used most extensivdy is Markovian [sec Howard (llJ71 )]. The Markov
property. based on the principle that the "future" is indepcndcnt of the "past" whcn the
"present" is known. is the causality principle of classical physics carried over to stochastic
dynamic systems. On the other hand. the hypothesis makes it possible to usc a large variety
of mathematical schemes elahorated in the theory of Markov stochastic processes. and
could lead to interesting results.

2. DETERM INISTIC 'I'll EOR Y OF CONTII'LiU~l Dr\\Ir\liE l\oll,CIlr\N ICS

Continuum Damage Mechanics (COM) supported by the thermodynamic theory of
irreversible processes has been developed continuously sin<.:e the pioneering works by
Kachanov (llJ58) and Rabotnov (1963). At present. it has evolved as a practi<.:al tool to
take into account the various damaging processes in solid materials and structures at a
macroscopic continuum level.

Before developing a general stochastic dynamic model. a brief review of several con­
cerned concepts and definitions is presented here.

General framework of CD AI
Continuum damage mechanics. as a phenomenological theory. is established from the

general principles of thermodynamics. A state variabk. as an internal variable. representing
the irreversible microstructural rearrangements manifested in the modes of diffuse flow.
change of phase. change in porosity. crystalline slip. twinning and loss of cohesion along
the grain boundaries or cleavage pbnes. is introduced into the constitutive equations of
solids. Based on the assumptions (a) that the response of a system depends only on the
current state of the system under consideration. and (b) that a thermodynamically irre­
versible process can be approximated by a sequence of constrained equilibrium states. the
application of the internal variable method leads to a sufftciently close approximation of a
given non-equilibrium state by a constrained equilibrium state (Kestin and Bataille. 1977).

Dama,l]c I'ariahlc
For the solution over a wide range of responses. damage as an internal variable should

have not only a real physical meaning. but should also be able to reflect the dominant
mechanism of irreversible rearrangements and dissipative processes of the system under
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consideration. Since damage is a comprehensive manifestation of a host of microscopic
responses which is related to a complex thermodynamic process. it would not be easy to
identify such a parameter. Therefore a lot of effort has been made using COM to identify
a suitable damage variable with the physical requirements described above and with the
mathematical accessibility. The various scalar. vectorial and tensorial definitions with the
mechanical. geometrical and physical interpretations can be found in a number ofreviews by
several distinguished investigators [see. for example, Chaboche (1981, 1988a,b), Kachanov
(1986), Krajcinovic (1984). Krajcinovic and Lemaitre (1987), Lemaitre (1984, 1986, 1987).
Lemaitre et al. (1987) and Murakami (1987)].

Thermod.vnamic mriables
In principle. it is always possible to select a proper set of internal variables which will

lead to a sufficiently close approximation of a given non-equilibrium state by a constrained
equilibrium state through the constitutive equations. A set of internal variables developed
by Lemaitre (1987) is limited to isotropic hardening for plasticity and to the isotropic
damage theory. For more general cases. the set of internal variables, together with their
associated variables or conjugate forces. is listed in Table I.

In general, the variables defined in Table I are suitable for most strain hardening
models and damage models including both isotropic and anisotropic models. For the
mechanical response. in the usual sense. isothermal conditions are considered so that the
effect of temperature enters the constitutive equations only through material parameters.

Esscntial postlliatc.l' o{CDM
To establish the damaged constitutive equations. it is necessary to relate the d'lmage

to other internal variables by some physical hypotheses. The postulate which is used
extensively in CDM is the hypothesis of strain equivalence. This hypothesis is basically
empirical in nature.•lOd was tacitly adopted from the beginning of CDM by Kachanov
(1958) and later was phrased .IS an essential principle by Lemaitre and Chaboche (1978)
[see also Lemaitre (1971) and Chaboche (1977)J. It states: Any strain constitutive equation
for a damaged materi.i1 is derived from the same potentials as for a virgin material except
th•• t all the stress variables are replaced by efli:ctive stresses. It relates to the concept of
effective stress i1 defined by

ti = M(D) : a. (I)

where M(D) is a fourth rank symmetric tensor. named as the "damage effect tensor" and
the symbol .. : " means the tensorial product contracted on two indices. [n general, M(D)
has 21 independent elements. One possible formulation was proposed by Cordebois and
Sidoroff (1982) and subsequently by Chow and Wang (1987a,b) in the principal coordinate
system which has only six elements that are non-zero. While damage is considered as
isotropy. (I) is reduced to a scalar form:

ti=a/(I-D) (2)

which relates the stress to the area supporting the load effectively (Rabotnov, 1969; Janson.
1977).

T..ble I. Thermodyn..mic v.. ri..bles

St.. le v.. ri ..bles

Strain tensor
Temperature
Elastic str.. in tensor
Plastic strain tensor
Accumulative plastic strain
D..mage tensor
Overall damage

Associated variables

• Cauchy slress tensor
o Entropy
" Cauchy stress tensor
,. Cauchy stress tensor
p Strain hardening threshold
o D,lmage energy release rate
... Damage strengthening threshold

(1

.r
(1

-(1

IR
Y
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The hypothesis of strain equivalence. associated with the concept of effective stress.
yields a strain-based formulation of damaged constitutive equations. However. a stress­
based characterization of the material response is sometimes necessitated as most elaster­
plastic models in the theory of plasticity are formulated in stress space. Thus. a hypothesis
of stress equivalence. similar to the strain equivalent postulate except that strain is replaced
by stress. is proposed by Simo and Ju (1987a.b). Since anisotropic damage is defined as a
second order tensor [see Lu and Chow (1990)). the postulates of both strain equivalence
and stress equivalence lead to an unsymmetrical stiffness or compliance matrix and hence
may be thermodynamically inadmissible. To overcome this. the hypothesis of elastic energy
equivalence (SidoroIT. 1981) and the hypothesis of stress working equivalence (Lu and
Chow. 1990) are proposed.

Thermodynamic potential
Based on the thermodynamic theory. under the isothermal condition the state of the

damaged material is defined through a thermodynamic potential per unit mass expressed
by

(3)

where x denotes a material point. t is time and others are defined in Table I. By using a
partial Legendre~~Fenchei transformation. the dual potential of (3). the complementary
energy per unit mass. can he ohtained as

(4)

where fI is the density of the matter. Upon suhstitution of (3) and (4) into the Clausius
Duhem inequality one obtains

(5)

From the normality rule. (5). and thermodynamic potential. (3). the state laws of the
materials with damage can be derived.

Potential ofdissipation
The evolution of damage. as a dissipative process of irreversible rearrangement of

microstructures. can be described by flux variables and their conjugate thermodynamic
forces. Table 2 lists a set of the flux variables and their conjugate dual variables where the
symbol .. · .. on top of a letter denotes the derivative with respect to time. where q is the
outward heat flux vector and V is temperatun:.

The complementary kinetic laws of damagc evolution can be derived from the dis­
sipative potential whidl is postulated as a convex non-negative scalar function of all flux
variables and the state variables acting as parameters. i.e.

Tanle 2. Flux varia nics and lheir
conjugale dual varianles

Flux varia nics Dual varianle,

r.~ IT

-p ~

-f> y
-li· B
qll I:rad IJ
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(6)

and the dual function can be obtained by partial or total Legendre-Fenchel transform as

¢.(X. t) = ¢. ((J. iR. Y. IS. grad 8 ; £". £ p •p.O. II'. O. x. t) . (7)

The dissipation rate is expressed by the Clausius-Ouhem inequality which must be
positive to satisfy the second principle of thermodynamics. Together with the state laws the
generalized normality rules can be obtained as

(8)

The most important step in the determination of the damaged constitutive equations
is the selection of analytical expressions for the potential of dissipation used to define the
kinetic laws.

J. STOCHASTIC DYNAMIC PROBABILISTIC MODELLING

To describe the damage of the structured solids using the stochastic dynamic theory.
we conceive an abstract dynamic system representing the state and evolution of the damage
material under consideration. The system has the properties as follows:

Property I. Structured solids under consideration in the system arc described as a
continuous system which means that the molecular structure of matter will be disregarded.
Under the assumption. all variables ddined in CDM. such as the variables in Table I and
the theory accompanied by the relevant conception developed by CDM are valid in the
system.

Property 2. In the process of damage evolution. the system's continuity and homo­
geneity remain the same as the original. In light of this assumption. the system is still
described as continuum when damage in some point or element reaches some critical value
in which the stilrness and strength have vanished.

Property 3. Oam<:lge variable D. as a continuum or discrete state vari.lble. varies in a
random manner in a mndom tield with a continuum or discrete parameter t (time. without
loss of generality). designated as D I • and has the random initial value Diu = Do.

Property 4. The stochastic characteristic of the state and evolution of damage in the
system is represented by a small stochastic l1uctuation of a white Gaussian noise ~,. for
- 00 < t < r'fJ. with mean E~I = 0 and a constant spectral density on the entire real axis.

In this p.lper. for the sake of simplicity. we confine ourselves to isotropic damage
although no restriction on anisotropy is imposed in the abstract dynamic system. Therefore.
the damage tensor 0 and damage energy release rate Y degenerated to the scale form D
and r. respectively.

To develop the stochastic dynamic modelling starting from the deterministic consti­
tutive equations. we need to extend the relevant concepts and the expressions in COM to
proper random tields. based on the abstr.lct dynamic system conceived.

Let {SI; t E [r (I. n:. denoted simply as SI' represent a stochastic process whose state
space is a cI-dimensional Euclidean space R" (for cI ~ I) and whose index set is defined in
an interval [to. n of the real axis R I which can in general be ( - x. + co). For our purposes.
it will be sutlicient in all cases to assume

$AS 29:23-H
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We shall always assume that the state space R J is endowed with the sigma-algebra ~J

of Borel sets and assume that all processes to be discussed below are defined on a certain
probability space m. u. P) n = (Rd)[r". n is the space of all R"-valued functions defined on
the interval [tu. T]; U = (\BJ)[r". n is the product sigma-algebra generated by the Borel sets
in R"; and P is the probability defined by the finite-dimensional distributions of the process
Sr on (n. U).

In our stochastic dynamic system. besides the evolution of the damage. all other
variables and potentials after introducing the randomized damage variable will contain the
deterministic relationships similar to those in COM.

With the assumption of continuum. the rate of damage evolution in the material can
be represented mathematically by a differential equation of the form

(9)

in which Dr is the randomized state variable of damage defined in the d-dimensional
Euclidean space R". and Xr is the random disturbance process defined in the m-dimensional
Euclidean space R"'. In this paper. we confine ourselves to d = 111 = I cases. D, denotes the
derivative of Dr to parametcr ( with the interval [(0. T] in which (u ~ 0 and T < 'XJ. In
general.fU. Dr. Xr) could be non-linear in Xr.

In light of Property 4 described above. the disturbance process in the system is rep­
resented by a small lluctuation of a white Gaussian noise ~,. So the random disturbance
prm:ess is indepl.:ndl.:nt with Dr. Thereforl.:. thl.: I.:volution of damage in our system could be
considl.:rl.:d as Iinl.:ar in .rl • so that (9) has thl.: form

( 10)

In this modI.:! . .rl (ould bl.: dl.:sl.:ribed by any independent random process with small
lllKtuation. If the llul.:tuation is a stodwstil.: process with sutliciently smooth or continuous
sample funl.:tions. (10) I.:an bl.: I.:onsidaed as an ordinary differential equation for the sampk
functions of the state of the system. When X, docs not depend at all on chance but is equal
to a fixed function. especially .rr == o. (10) degenerates into a deterministic equation.

For no other reason than that of the physical phenomenon as well as the simplicity in
mathematil.:s. we introdul.:e the white noise ~I as the prototype ofa dl.:!ta-corrclated Gaussian
noise process representing the lhll.:tuating prtKess. Thus our model has the form

( II )

for which a precise mathematical theory. by virtue of the stochastic integral. has been
developed [sec Arnold (1974)]. The solution is a Markov process and the etlicient methods
exist for the mathematil.:al analysis of this type of process. However. it has the disadvantage
that its sample functions arc not smooth functions [see Howard (1971)]. This is typical of
the Markov processes because the Markov property formulated in a negative way states
that: for a known "present" it is forbidden to transmit information from the "past" into
the "future".

Even though the white noise ~, is not a usual stochastic process. nonetheless the
indefinite integral of ~I can be identified by an R I-valued Wiener process WI' i.e.

or. in shorter symbolic notation when we consider both processes as gencralizcd stochastic
processes. as
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Therefore (I I) could be re-written as

2927

We have not yet considered f(t.D,) and G(t.D,) in (10) even though (12) has been
developed. Obviously. f(t. Dt ) and G(t. D,) will depend on the constitutive equations of
material since our approach is to start with the deterministic approach accompanied by
an abstract dynamic system. Two assumptions are important in developing the model.
Assumption I is that f(t. Dr> in (12) should be identical to the deterministic constitutive
equations of material under consideration. Although it is unnecessary in developing a
stochastic dynamic model because of the noise-induced shift. it is reasonable to compound
the shift into the deterministic constitutive equations of material from the beginning. In
fact. the definition of the damage variable D in CDM has been explained as a statistical
mean value. This means that the deterministic constitutive equations developed in CDM
could contain the noise-induced shift. Assumption 2 is that the intensity of fluctuation is
directly proportional to the mean rate of damage evolution described by the deterministic
constitutive equations. This assumption is made because of the consideration of physics
rather thun one of mathcmutics.

From these two ussumptions and the generalized normulized rulcs for the rate of
increuse of internal variables. (8). a general stochastic dynamic model for damage is
proposed in the form

or

t:4>: t:4>1
dD,=-~-y· dt+'~ydW,. to~t~T<oo. D'o=Do•

L, L t

(13)

( (4)

where' is a proportional constant. It should be noted th~lt subscript / have becn added to
4>. and Y to distinguish between deterministic and stochastic ones.

In accordance with this model. the stochastic dynamic laws could be derived from the
generalized potential function of dissipation. For example. from the potential function
proposed by Lemaitre (1987) a stochastic damage constitutive equation can be obtained as

to ~ t ~ T < 00. D,u = Do. (15)

where So and ~o arc two coefTIcients of the material characteristic whereas S I =So/( is a
stochastic characteristic of the material. In Lemaitre theory, 1t represents the rate of the
accumuluted microplastic strain and

[
(1+/)(0'): (0')-/)(tr(0'»2 (1+/)(-0'): (-0')-/)(-tr(0'»2] -I

Y =--------'2£( I:':!)jr---- ,- - +"------~£(t::DII) 2 (I - k1t 11m ) •

where /) and E are elasticity coefTIcients vurying with temperature; Jz is a closure coefTIcient
which charucterizes the closure of the microcracks and microcavities; k and 11/ arc micro­
plasticity coefficients. In the formulation. the Cauchy stress tensor was divided into a
"positivc" purt (0') und a "negative" part (-0').

Equation (14) could be used to describe the stochastic evolution of various types of
damage to the material and structure. such as ductile. fatigue. creep and so on. The
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admissibility of the model proposed will be supported by both the reasonable description
of the physical phenomenon and the accessibility of the mathematics.

4. PROPERTIES A:-iO SOLUTIO:-i OF THE STOCHASTIC MODEL

The proposed model. (14), is based on an abstract dynamic system. In this system, the
stochastic fluctuation is described by a white Gaussian noise ~" for - x < t < XJ, with
zero mean and a constant spectral density on the entire real axis. This is, as it is known, a
non-physical but abstract and useful idealization. The infinite integral of ~,can be identified
with a Wiener process with mean £W, = 0 and with covariance nv, W, = min (t, 05). There­
fore. (14) could be interpreted as an abbreviation for the integral equation

I't'cjJ* j" ccjJ*
D = D ----'-- dt + r---'- d IV, If ;j1,' '>:lY ,.

lu ( 1 t t n { 1

( 16)

Since the sample functions of W, are. with probability 1. continuous though not of bounded
variation in any interval. the second integral in (16) cannot be regarded in general as an
ordinary Riemann-Stieltjes integral with respect to the sample functions of W,. This is
because in the attempt to evaluate the integral

as the limiting value of the approximating Sluns

S" = L fV,,( fV" -IV" ,). Ill::::; I ::::; ... ~ I" = I. I, I ::::; r, ::::; I,.
,--I

the n.:sult depends very much on the choice of thc intcrmcdiate point r,. A difTerent choice
of r, will providc a dilfercnt interpretation of the stochastic diffcrential equation. Ito's choice
of r, = I, I leads to an unsymmctrical integral

with respect to the variable I since the increments drV, point into the future (Ito. 1951). in
which qm-lim denotes quadratic mean or mean square limit. and (jll = max (/,-1, d. It
results in the discrepancy bctween the stochastic differential equation and the ordinary
ditl'cn:ntial equation. However, it is just this lack of symmetry that leads to the simple
formulae for the first two moments of the integral .lOd to the Martingale property [see
Arnold (1974»). Furthermore. from Ito's theorem a difl'usion process can be obtained as
the solution of the stochastic difl'erential equation (12). The intuitive significance of the
coellicientsf(t, Dr) and G(t. Dr) is explained by n:gardingI(/, Dr) as the drift vector and

B(I, /),) = GU, Dr)(i'U, Dr), ( 17)

as the din'usion matrix of that process. in which G' (I. /),) is the transpose of the matrix
G(I. /),). Therefore. in accordance with the definition of the diffusion process the first two
moments are

and

. I i11m
tir t- r 11"

(y-x)P(r.x.t.dy) =f(r.x) ( 18)
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lim-I-f. (y-x)(y-x)'P(r,x,t,dy) = B(r,x),
t.: l-r :r- t! ~£

( 19)

where c: > 0, rE [to, n. XE RJ and yE R.I.
Another interpretation is based on the definition of Stratonovich's time-symmetric

stochastic integral (Stratonovich, 1966). In accordance with Stratonovich's definition. the
unsymmetrical part in the integral

I, "~V, + ~V,
W, dW, = qm-lim "-'-'~-' (W,.- W, ) = (WC_ WC)2

\l" _ o.L. .., . I I 1 r to
'I' 1= 1 -

vanishes. Therefore. the solution of (16) can be obtained by formal integration by parts.
Obviously, the two different mathematical definitions will lead to different solutions

for our model. These discrepancies arise not from the errors in the mathematical calculation
but from the general discontinuity of the relationship between differential equations for
stochastic processes and their solutions. Though Stratonovich's definition matches the
consistency between the stochastic differential equation and ordinary differential equ'llion,
it is. however, difficult to judge which of the two is the correct definition because there is
no reason why the definition of the stochastic differential equation should be consistent
with that of the ordinary differential equation. In fact, [to's equation should be equivalent
to Str'ltonovich's equation through a mathematical transform as

(
. 1'(i(/,f)r) )

dDr = j(t.D,)+ 217[), G(/,D,) dt+G(/,D,)dW,. (20)

In view of the above reasons. we adopt Ito's interpret'ttiol1. from whil:h the drift
coel1icientj'(/. D,) identities with the deterministic constitutive equations in CDM. This is
one of the reasons for Assumption I described in Section 3 to be taken.

There are in general two approaches for the solution of our model: One is directly
concerned with the random damage variable Dr and its derivativc. This belongs to the
probabilistic or direct method. Another is the so-called analytical or indirect probability
method which does not deal with the timewise devclopment of the state D" but. for example.
with the timewise development of transition probabilities P(DrE BID, = x). In accordance
with the theory of the stochastic differential equation, the solution of (14) is a diffusion
process. For the diffusion process. there exist cfl'ective solutions for the analytical probability
method. For example. we can obtain the transition density PAr, Dr. t, D,) from a fun­
damental solution of the Kolmogorov's forward or the Fokker-Planck equation:

where h,I(/. D,) are the elements of the diffusion matrix B(t. D,). In this p.tper. we do not
describe the solution process since it can be found in relevant references [see Arnold (1974)).
Instead. we briefly discuss the existence and uniqueness ofa solution of the proposed model.

According to the theory of the stochastic differential equation. to ensure the existence
and uniqueness 01'.1 solution of the equation

dD, = j'(t. Dr) +G(t, D,) d W" In ~ I ~ T < 00. D,u = Dr..

where W, is an Rm-v.llued Wiener process and Dn is a random variable independent of W,­
W'o for I ~ 10 , The RJ-valued function J(/. D,) and the (d x m matrix)-valued function
G(/, D,) should be defined and measurable on [/ 0 .11 x R" and satisfy the following proper­
ties. There exists a constant K> 0 such that:
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(a) for all tE [to. 71. XE R" and yE R.I.

If(t.x)-/U.y)I+IGU.x)-GU.y)1 ~ Klx-yl:

(b) foralltE[to.71andxER".

If(t.x)I"+IG(t.x)l" ~ K"(I +lxl").

In our model (14).

v );c/J*
G(t. Dr) = (,F(t. Dr) = (, cy .

where' is a bounded constant characterizing the intensity of random fluctuation. Therefore.
the conditions of existence and uniqueness of a solution for the stochastic differential
equation (14) will be the same for an ordinary differential equation. In other words. our
model has a unique Rei-valued solution Dr in the index set [tn. 71 c [0. Cf) of the stochastic
process. and continuous with probability I so long as a solution of the deterministic
constitutive equations in COM satisfies the conditions of existence and uniqueness.

5. DISCUSSION

Although the definition of damage in COM is based on the concept of the statistical
mean. the evolution process is sensitive to environmental ellccts which often vary in a
r'lI1dom manner and usually cannot be controlled or measured in practice. The need for
incorporating the stochastic characteristic in the damage variable Dis thercrore evident. In
'Iddition to the physical consideration. the development of probabilistic CDM ean help to
solve complex field problems in areas of engineering such .IS aerospace and oO'shore since
exact analysis using the deterministic theory of COM is extremely dillicult in these areas.

The proposed model is intended to bridge the gap between CDM and the probabilistic
COM. The analysis reduces to a stochastic dil1crential equation for which there exists a
powerful analytical means at our disposal. In accordance with the theory of the stochastic
differential equation. the solution process of our model is a dilrusion process with the drift
coellicient f(t. D,) and the dilrusion matrix B(t. D,). This is a speci.d case of the Markov
process with continuous sample functions which at first serve as probability-theoreti(.;
models of physical diffusion phenomena. but l'lter h.lve been proven to be suitable for
stochastic modelling of a wide variety of physical phenomena. If we first assume that
damage evolution can be described by a ditrusion process, the first two moments of the
increment D,- Dr under the condition Dr = X as t! r become

and

Er.AD,-Dr) = f(r,x)(t-r)+O(t-r)

Er..,(Dr-Dr)(Dr-Dr)' = B(r.x)(t-r)+O(t-r).

(22)

(23)

Therefore, j(t, x) denotes the mean rate of the random damage evolution described by Dr
under the assumption Dr = x. B( t, x) is a measure of the local magnitude of the fluctuation
of Dr - Dr about the mean value. These are, in physics, consistent with Assumptions I and
2 described in Section 3. This is also one of the reasons for us to take these assumptions.

6. CONCLUSIONS

By virtue of the deterministic theory of COM, a general mathematical scheme of
stochastic dynamic modelling for damage evolution has been proposed. The stochastic
dynamic analysis of various types of damage. such as ductile. fatigue and creep damage,
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could be taken into account. This model is based on the potential of dissipation after
introducing the randomized damage variable in a proper random field. The coupling among
the randomized damage. stress and strain is automatically obtained through the stochastic
damaged constitutive equations. Therefore. the stochastic dynamic analysis of structural
damage could be integrated with the stress-strain analysis of structure using numerical
methods. such as the finite element. boundary element and hybrid element methods.

In addition to the stochastic dynamic property of damage evolution. the proposed
model can also describe some important properties embodied in the deterministic damage
theory. Taking Lemaitre theory as an example [see eqn (15)]. the proposed model can at
least include the following properties:

-The positive damage rate since the systematic term (drift coefficient) in our model is
positive and controls the process of damage evolution.

-The effect of stress triaxiality on damage can be modelled because the variable Y in the
systematic term contains the triaxiality ratio (a /f11"4)'

-Damage under random loading is modelled through the variation of stress in both the
systematic and tluctuation (diffusion) terms.

-The non-linearity of dmnage with regard to stress by its dependence on p and 7t which
are non-linear functions of stress.

-The non-linearity of damage with regard to time or number of cycles by the term
(I - D,)'" corresponds to a non-linear stochastic ditTerential equation in damage.

Finally. it should be noted that the proposed stochastic dynamic model will degenerate
into the deterministic constitutive equations of CDM while the lluctuation term vanishes,
Therefore. the proposcd model can not only take into account the physical behaviour. but it
also enables the damage analysis to be carried out simultaneously based on the deterministic
theory and the stm:hastic dynamic theory.
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